BotOnus: AnOnline UnsupervisedMethod for Botnet Detection

نویسندگان

  • Mosa Yahyazadeh
  • Mahdi Abadi
چکیده

Botnets are recognized as one of the most dangerous threats to the Internet infrastructure. They are used for malicious activities such as launching distributed denial of service attacks, sending spam, and leaking personal information. Existing botnet detection methods produce a number of good ideas, but they are far from complete yet, since most of them cannot detect botnets in an early stage of their lifecycle; moreover, they depend on a particular command and control (C&C) protocol. In this paper, we address these issues and propose an online unsupervised method, called BotOnus, for botnet detection that does not require a priori knowledge of botnets. It extracts a set of flow feature vectors from the network traffic at the end of each time period, and then groups them to some flow clusters by a novel online fixed-width clustering algorithm. Flow clusters that have at least two members, and their intra-cluster similarity is above a similarity threshold, are identified as suspicious botnet clusters, and all hosts in such clusters are identified as bot infected. We demonstrate the effectiveness of BotOnus to detect various botnets including HTTP-, IRC-, and P2P-based botnets using a testbed network. The results of experiments show that it can successfully detect various botnets with an average detection rate of 94.33% and an average false alarm rate of 3.74%. c © 2012 ISC. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BotOnus: an online unsupervised method for Botnet detection

Botnets are recognized as one of the most dangerous threats to the Internet infrastructure. They are used for malicious activities such as launching distributed denial of service attacks, sending spam, and leaking personal information. Existing botnet detection methods produce a number of good ideas, but they are far from complete yet, since most of them cannot detect botnets in an early stage ...

متن کامل

BotRevealer: Behavioral Detection of Botnets based on Botnet Life-cycle

Nowadays, botnets are considered as essential tools for planning serious cyberattacks. Botnets are used to perform various malicious activities such as DDoSattacks and sending spam emails. Different approaches are presented to detectbotnets; however most of them may be ineffective when there are only a fewinfected hosts in monitored network, as they rely on similarity in...

متن کامل

A Survey on Botnet Architectures, Detection and Defences

Botnets are known to be one of the most serious Internet security threats. In this survey, we review botnet architectures and their controlling mechanisms. Botnet infection behavior is explained. Then, known botnet models are outlined to study botnet design. Furthermore, Fast-Flux Service Networks (FFSN) are discussed in great details as they play an important role in facilitating botnet traffi...

متن کامل

Revealing the Criterion on Botnet Detection Technique

Botnet have already made a big impact that need much attention as one of the most emergent threats to the Internet security. More worst when the peer-to-peer (P2P) botnets take the inspiration and underlying P2P technology to exchange files making botnets much harder to detect and shut down. It make botnets are the biggest threat to internet stability and security. Hence, Botnet detection and p...

متن کامل

A Holistic Botnet Detection Framework Independent of Botnet Protocols and Architecture

Fast growth of Internet has brought some security concerns. One of these security concerns is Botnet. Bot and Botnets are new sophisticated kind of malware that is equipped with advanced features and have variety of applications. This paper reviews the current botnet detection frameworks and their advantages and drawbacks. To address the drawbacks we propose a conceptual holistic Botnet Detecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011